• 発売日:2022/05/26
  • 出版社:講談社
  • ISBN:9784065279786

読み込み中…

Pythonではじめるベイズ機械学習入門

Pythonではじめるベイズ機械学習入門

通常価格 3,080 円(税込)
通常価格 セール価格 3,080 円(税込)
SALE 売り切れ
  • 発売日:2022/05/26
  • 出版社:講談社
  • ISBN:9784065279786
ネットストア在庫 詳細
    読み込み中...
My店舗在庫
    My店舗登録で在庫確認と店舗お受け取りのご利用が可能になります。(要ログイン)
  • 在庫表示のサンプル
商品説明
★確率的プログラミング言語がすぐに使える!★
・Pythonでのコーディングを前提に、PyMC3、Pyro、NumPyro、TFP、GPyTorchをカバー。
・回帰モデルの基本から潜在変数モデル・深層学習モデルまでを幅広く解説。

【主な内容】
第1章 ベイジアンモデリングとは
1.1 データ解析とコンピュータ
1.2 ベイジアンモデリングの基礎
1.3 代表的な確率分布
1.4 近似推論手法

第2章 確率的プログラミング言語(PPL)
2.1 ベイジアンモデリングとPPL
2.2 自動微分・最適化アルゴリズム
2.3 PyMC3の概要
2.4 Pyroの概要
2.5 NumPyroの概要
2.6 TensorFlow Probabilityの概要
2.7 GPyTorchの概要

第3章 回帰モデル
3.1 線形回帰モデル:線形単回帰モデル
3.2 線形回帰モデル:線形重回帰モデル
3.3 一般化線形モデル:ポアソン回帰モデル
3.4 一般化線形モデル:ロジスティック回帰モデル
3.5 階層ベイズモデル
3.6 ガウス過程回帰モデル:ガウス尤度
3.7 ガウス過程回帰モデル:尤度の一般化

第4章 潜在変数モデル
4.1 混合ガウスモデル
4.2 行列分解モデル
4.3 状態空間モデル
4.4 隠れマルコフモデル
4.5 トピックモデル
4.6 ガウス過程潜在変数モデル

第5章 深層学習モデル
5.1 ニューラルネットワーク回帰モデル
5.2 変分自己符号化器
5.3 PixelCNN
5.4 深層ガウス過程
5.5 正規化流
目次
第1章 ベイジアンモデリングとは
1.1 データ解析とコンピュータ
1.2 ベイジアンモデリングの基礎
1.3 代表的な確率分布
1.4 近似推論手法

第2章 確率的プログラミング言語(PPL)
2.1 ベイジアンモデリングとPPL
2.2 自動微分・最適化アルゴリズム
2.3 PyMC3の概要
2.4 Pyroの概要
2.5 NumPyroの概要
2.6 TensorFlow Probabilityの概要
2.7 GPyTorchの概要

第3章 回帰モデル
3.1 線形回帰モデル:線形単回帰モデル
3.2 線形回帰モデル:線形重回帰モデル
3.3 一般化線形モデル:ポアソン回帰モデル
3.4 一般化線形モデル:ロジスティック回帰モデル
3.5 階層ベイズモデル
3.6 ガウス過程回帰モデル:ガウス尤度
3.7 ガウス過程回帰モデル:尤度の一般化

第4章 潜在変数モデル
4.1 混合ガウスモデル
4.2 行列分解モデル
4.3 状態空間モデル
4.4 隠れマルコフモデル
4.5 トピックモデル
4.6 ガウス過程潜在変数モデル

第5章 深層学習モデル
5.1 ニューラルネットワーク回帰モデル
5.2 変分自己符号化器
5.3 PixelCNN
5.4 深層ガウス過程
5.5 正規化流
詳細を表示する

カスタマーレビュー

honto本の通販ストアのレビュー(0件)

並び順:
1/1ページ

最近チェックした商品