プレースホルダー画像

サンプルサンプル

サンプルサンプルサンプルサンプル

サンプル著者名
5,720円
hontoで電子版を見る
  • 発売日:2026/02/20
  • 出版社:日経BP
  • ISBN:9784296207824

読み込み中…

最短コースでわかるディープラーニングの数学 増補改訂版

最短コースでわかるディープラーニングの数学 増補改訂版

通常価格 4,180 円(税込)
通常価格 セール価格 4,180 円(税込)
SALE 売り切れ
  • 発売日:2026/02/20
  • 出版社:日経BP
  • ISBN:9784296207824
ネットストア在庫 詳細
    読み込み中...
My店舗在庫
    My店舗登録で在庫確認と店舗お受け取りのご利用が可能になります。(要ログイン)
  • 在庫表示のサンプル
商品説明
本書は「導入編」「理論編」「実践編」「発展編」の4ステップに分け、ディープラーニングのアルゴリズムの理解に必要な数学の基礎知識を学んでから、ディープラーニングのアルゴリズムの理解を目指せる構成としています。
 まずは本書の概要を「導入編」で紹介し、続く「理論編」で高校1年レベルからの数学の基礎知識を解説します。これを土台として「実践編」でディープラーニングの動作原理を紐解きます。実際にPythonのサンプルプログラムを動かしながら理解できるようにしました。最後の「発展編」では、「実践編」で紹介し切れなかったディープラーニングの各種手法をまとめました。
 「実践編」や「発展編」で紹介しているPythonのサンプルプログラムは、Notebook形式で用意しています。Google Colabを利用することで、プログラミングの知識がなくても、すぐに動かすことができます。Notebook形式なので、誌面で解説している通りにステップを刻みながら動かすことができます。これにより、ディープラーニングの動作原理を体感しながら理解することができます。
 今回は「増補改訂版」として、主に「実践編」と「発展編」を大幅に加筆・修正しました。サンプロプログラムも理解しやすいように見直しています。また、「理論編」では各章の最後に「演習問題」を新たに追加しました。これは、読者からの「理解度をチェックしたい」という要望に応えたものです。
目次
【導入編】
1章 機械学習入門

【理論編】
2章 微分・積分
3章 ベクトル・行列
4章 多変数関数の微分
5章 指数関数・対数関数
6章 確率・統計

【実践編】
7章 線形回帰モデル(回帰)
8章 ロジスティック回帰モデル(2値分類)
9章 ロジスティック回帰モデル(多値分類)
10章 ディープラーニングモデル

【発展編】
11章 実用的なディープラーニングを目指して
詳細を表示する

カスタマーレビュー

honto本の通販ストアのレビュー(0件)

並び順:
1/1ページ

最近チェックした商品